Abstract

Owing to the challenge of capturing the dynamic behaviour of metal experimentally, high-precision numerical simulations have become essential for analysing dynamic characteristics. In this study, calculation accuracy was improved by analysing the impact of constitutive models using the finite element (FE) model, and the deep learning (DL) model was employed for result analysis. The results showed that FE simulations with these models effectively capture the elastic-plastic response, and the ZA model exhibits the highest accuracy, with a 26.0% accuracy improvement compared with other models at 502 m/s for Hugoniot elastic limit (HEL) stress. The different constitutive models offer diverse descriptions of stress during the elastic-plastic response because of temperature effects. Concurrently, the parameters related to the yield strength at quasi-static influence the propagation speed of elastic waves. Calculation show that the yield strength at quasi-static of 6061 Al adheres to y = ax + b for HEL stress. The R-squared (R2) and mean absolute error (MAE) values of the DL model for HEL stress predictions are 0.998 and 0.0062, respectively. This research provides a reference for selecting constitutive models for simulation under the same conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call