Abstract
Wave breaking is a complex physical process about which open questions remain. For some applications, it is critical to include breaking effects in phase-resolved envelope-based wave models such as the non-linear Schrödinger. A promising approach is to use machine learning to capture breaking effects. In the present paper we develop the machine learning architecture to model breaking developed by Eeltink et al. (2022) further, potentially enabling more detailed breaking physics to be captured. We show that this model can be trained on focused wave groups but can also capture breaking in random waves and modulated plane waves. Analysis of the model suggests that the machine learning has broken the problem into two—one part which detects whether the wave is breaking and another which captures the subsequent behaviour, consistent with the way human scientists routinely understand the breaking problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.