Abstract
In patients undergoing high-risk cardiac surgery, the uncertainty of outcome may complicate the decision process to intervene. To augment decision-making, a machine learning approach was used to determine weighted personalized factors contributing to mortality. American College of Surgeons National Surgical Quality Improvement Program wasqueried for cardiac surgery patients with predicted mortality ≥10% between 2012 and 2019. Multiple machine learning models were investigated, with significant predictors ultimately used in gradient boosting machine (GBM) modeling. GBM-trained data were then used for local interpretable model-agnostic explanations(LIME) modeling to provide individual patient-specific mortality prediction. A total of 194 patient deaths among 1291 high-risk cardiac surgeries were included. GBM performance was superior to other model approaches. The top five factors contributing to mortality in LIME modeling were preoperative dialysis, emergent cases, Hispanic ethnicity, steroid use, and ventilator dependence. LIME results individualized patient factors with model probability and explanation of fit. The application of machine learning techniques provides individualized predicted mortality and identifies contributing factors in high-risk cardiac surgery. Employment of this modeling to the Society of Thoracic Surgeons database may provide individualized risk factors contributing to mortality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.