Abstract
Temporal lobe epilepsy is the most common reason behind drug-resistant seizures and temporal lobectomy (TL) is performed after all other efforts have been taken for a Temporal lobe epilepsy. Our study aims to develop multiple machine learning (ML) models capable of predicting postoperative outcomes following TL surgery. Data from the American College of Surgeons National Surgical Quality Improvement Program database identified patients who underwent TL surgery. We focused on 3 outcomes: prolonged length of stay (LOS), nonhome discharges, and 30-day readmissions. Six ML algorithms, TabPFN, XGBoost, LightGBM, Support Vector Machine, Random Forest, and Logistic Regression, coupled with the Optuna optimization library for hyperparameter tuning, were tested. Models with the highest area under the receiver operating characteristic (AUROC) values were included in the web application. SHapley Additive exPlanations was used to evaluate importance of predictor variables. Our analysis included 423 patients. Of these patients, 111 (26.2%) experienced prolonged LOS, 33 (7.8%) had nonhome discharges, and 29 (6.9%) encountered 30-day readmissions. The top-performing models for each outcome were those built with the Random Forest algorithm. The Random Forest models yielded AUROCs of 0.868, 0.804, and 0.742 in predicting prolonged LOS, nonhome discharges, and 30-day readmissions, respectively. Our study uses ML to forecast adverse postoperative outcomes following TL. We developed accessible predictive models that enhance prognosis prediction for TL surgery. Making ML models available for this purpose represents a significant advancement in shifting toward a more patient-centric, data-driven paradigm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.