Abstract

Bayesian theory lies down a sound framework for ultralow-dose computed tomography (ULdCT) image reconstruction with two terms for modeling the data statistical property and incorporating a priori knowledge for the tobe- reconstructed image. This study investigates the feasibility of using machine learning strategy, particularly the convolutional neural network (CNN), to construct a tissue-specific texture prior from previous full-dose CT (FdCT) and integrates the prior with the pre-log shift Poisson (SP) data property for Bayesian reconstruction of ULdCT images. The Bayesian reconstruction was implemented by an algorithm, called SP-CNN-T, and compared with our previous Markov random field (MRF) based tissue-specific texture prior algorithm, called SP-MRF-T. Both training performance and image reconstruction results showed the feasibility of constructing CNN texture prior model and the potential of improving the structure preservation of the nodule comparing to our previous regional tissue-specific MRF texture prior model. Quantitative structure similarity index (SSIM) and texture Haralick features (HF) were used to measure the performance difference between SP-CNN-T and SP-MRF-T algorithms, demonstrating the feasibility and the potential of the investigated machine learning approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.