Abstract

Markov random field (MRF) has been widely used to incorporate a priori knowledge as penalty or regularizer to preserve edge sharpness while smoothing the region enclosed by the edge for pieces-wise smooth image reconstruction. In our earlier study, we proposed a type of MRF reconstruction method for low-dose CT (LdCT) scans using tissue-specific textures extracted from the same patient's previous full-dose CT (FdCT) scans as prior knowledge. It showed advantages in clinical applications. This paper aims to remove the constraint of using previous data of the same patient. We investigated the feasibility of extracting the tissue-specific MRF textures from an FdCT database to reconstruct a LdCT image of another patient. This feasibility study was carried out by experiments designed as follows. We constructed a tissue-specific MRF-texture database from 3990 FdCT scan slices of 133 patients who were scheduled for lung nodule biopsy. Each patient had one FdCT scan (120 kVp/100 mAs) and one LdCT scan (120 kVp/20 mAs) prior to biopsy procedure. When reconstructing the LdCT image of one patient among the 133 patients, we ranked the closeness of the MRF-textures from the other 132 patients saved in the database and used them as the a prior knowledge. Then, we evaluated the reconstructed image quality using Haralick texture measures. For any patient within our database, we found more than eighteen patients' FdCT MRF texures can be used without noticeably changing the Haralick texture measures on the lung nodules (to be biopsied). These experimental outcomes indicate it is promising that a sizable FdCT texture database could be used to enhance Bayesian reconstructions of any incoming LdCT scans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.