Abstract

Earthquakes often affect buildings that did comply with regulations in force at the time of design, prompting the need for new approaches addressing the complex structural dynamics of seismic design. In this paper, we demonstrate how strucural resilience can be appraised to inform optimization pathways by utilising artificial neural networks, augmented with evolutionary computation. This involves efficient multi-layer computational models, to learn complex multi-aspects structural dynamics, through several levels of abstraction. By means of single and multi-objective optimization, an existing structural system is modelled with an accuracy in excess of 98% to simulate its structural loading behaviour, while a performance-based approach is used to determine the optimum parameter settings to maximize its earthquake resilience. We have used the 2008 Wenchuan Earthquake as a case study. Our results demonstrate that an estimated structural design cost increase of 20% can lead to a damage reduction of up to 75%, which drastically reduces the risk of fatality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.