Abstract

This study aimed to develop low-cost models using machine learning approaches predicting the achievement of Clinical Disease Activity Index (CDAI) remission 6months after initiation of tumor necrosis factor inhibitors (TNFi) as primary biologic/targeted synthetic disease-modifying antirheumatic drugs (b/tsDMARDs) for rheumatoid arthritis (RA). Data of patients with RA initiating TNFi as first b/tsDMARD after unsuccessful methotrexate treatment were collected from the FIRST registry (August 2003 to October 2022). Baseline characteristics and 6-month CDAI were collected. The analysis used various machine learning approaches including logistic regression with stepwise variable selection, decision tree, support vector machine, and lasso logistic regression (Lasso), with 48 factors accessible in routine clinical practice for the prediction model. Robustness was ensured by k-fold cross validation. Among the approaches tested, Lasso showed the advantages in predicting CDAI remission: with a mean area under the curve 0.704, sensitivity 61.7%, and specificity 69.9%. Predicted TNFi responders achieved CDAI remission at an average rate of 53.2%, while only 26.4% of predicted TNFi non-responders achieved remission. Encouragingly, the models generated relied solely on patient-reported outcomes and quantitative parameters, excluding subjective physician input. While external cohort validation is warranted for broader applicability, this study highlights the potential for a low-cost predictive model to predict CDAI remission following TNFi treatment. The approach of the study using only baseline data and 6-month CDAI measures, suggests the feasibility of establishing regional cohorts to generate low-cost models tailored to specific regions or institutions. This may facilitate the application of regional/in-house precision medicine strategies in RA management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.