Abstract

Drop impact on a dry substrate is ubiquitous in nature and industrial processes, including aircraft de-icing, ink-jet printing, microfluidics, and additive manufacturing. While the maximum spreading factor is crucial for controlling the efficiency of the majority of these processes, there is currently no comprehensive approach for predicting its value. In contrast to the traditional approach based on scaling laws and/or analytical models, this paper proposes a data-driven approach for estimating the maximum spreading factor using supervised machine learning (ML) algorithms such as linear regression, decision tree, random forest, and gradient boosting. For this purpose, a dataset of hundreds of experimental results from the literature and our own—spanning the last thirty years—is collected and analyzed. The dataset was divided into training and testing sets, each representing 70% and 30% of the input data, respectively. Subsequently, machine learning techniques were applied to relate the maximum spreading factor to relevant features such as flow controlling dimensionless numbers and substrate wettability. In the current study, the gradient boosting regression model, capable of handling structured high-dimensional data, is found to be the best-performing model, with an R2-score of more than 95%. Finally, the ML predictions agree well with the experimental data and are valid across a wide range of impact conditions. This work could pave the way for the development of a universal model for controlling droplet impact, enabling the optimization of a wide variety of industrial applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call