Abstract
Searching genomes to locate noncoding RNA genes with known secondary structure is an important problem in bioinformatics. In general, the secondary structure of a searched noncoding RNA is defined with a structure model constructed from the structural alignment of a set of sequences from its family. Computing the optimal alignment between a sequence and a structure model is the core part of an algorithm that can search genomes for noncoding RNAs. In practice, a single structure model may not be sufficient to capture all crucial features important for a noncoding RNA family. In this paper, we develop a novel machine learning approach that can efficiently search genomes for noncoding RNAs with high accuracy. During the search procedure, a sequence segment in the searched genome sequence is processed and a feature vector is extracted to represent it. Based on the feature vector, a classifier is used to determine whether the sequence segment is the searched ncRNA or not. Our testing results show that this approach is able to efficiently capture crucial features of a noncoding RNA family. Compared with existing search tools, it significantly improves the accuracy of genome annotation.
Accepted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have