Abstract
This paper presents a machine hearing system for audio-based robust cough segmentation that can be easily deployed in mobile scenarios. Cough detection is performed in two steps. First, a short-term spectral feature set is separately computed in five predefined frequency bands: [0, 0.5), [0.5, 1), [1, 1.5), [1.5, 2), and [2, 5.5125]kHz. Feature selection and combination are then applied to make the short-term feature set robust enough in different noisy scenarios. Second, high-level data representation is achieved by computing the mean and standard deviation of short-term descriptors in 300 ms long-term frames. Finally, cough detection is carried out using a support vector machine trained with data from different noisy scenarios. The system is evaluated using a patient signal database which emulates three real-life scenarios in terms of noise content. The system achieves 92.71% sensitivity, 88.58% specificity, and 90.69% Area Under Receiver Operating Charcteristic (ROC) curve (AUC), outperforming state-of-the-art methods. Our research outcome paves the way to create a device for cough monitoring in real-life situations. Our proposal is aligned with a more comfortable and less disruptive patient monitoring, with benefits for patients (allows self-monitoring of cough symptoms), practitioners (e.g., assessment of treatments or better clinical understanding of cough patterns), and national health systems (by reducing hospitalizations).
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have