Abstract

This article proposes a Lyapunov-based model predictive control (MPC) design for a dual output multilevel rectifier. The investigated topology, a seven-level packed U-cell (PUC7) converter, is selected based on its high reliability, compactness, and low cost. The proposed controller has the following advantages over the conventional MPC controllers: First, no gain tuning is required; second, easy implementation; and third, reduced number of sensors (the load currents are estimated using the mathematical model of the PUC7 rectifier). Simulation and experimental results are provided to show the high dynamic performance and effectiveness of the Lyapunov-based MPC controller in tracking the output voltage references under grid change and parameters mismatch conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.