Abstract

In the present work, we focus on the development and application of Lyapunov-based economic model predictive control (LEMPC) designs to a catalytic alkylation of benzene process network, which consists of four continuously stirred tank reactors and a flash separator. We initially propose a new economic measure for the entire process network which accounts for a broad set of economic considerations on the process operation including reaction conversion, separation quality and energy efficiency. Subsequently, steady-state process optimization is first carried out to locate an economically optimal (with respect to the proposed economic measure) operating steady-state. Then, a sequential distributed economic model predictive control design method, suitable for large-scale process networks, is proposed and its closed-loop stability properties are established. Using the proposed method, economic, distributed as well as centralized, model predictive control systems are designed and are implemented on the process to drive the closed-loop system state close to the economically optimal steady-state. Extensive simulations are carried out to demonstrate the application of the proposed economic MPC (EMPC) designs and compare them with a centralized Lyapunov-based model predictive control design, which uses a conventional, quadratic cost function that includes penalty on the deviation of the states and inputs from their economically optimal steady-state values, from computational time and closed-loop performance points of view.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call