Abstract

Epistatic interactions between the non-autoimmune strains 129 and C57BL/6 (B6), used for generating gene-targeted animals, can induce a lupus-like disease. Genome-wide scan analyses of testcross progeny between these two strains have identified several lupus susceptibility loci, with the strongest linkage to the production of autoantibodies (auto-Abs) displayed by an interval on chromosome 1 of 129 origin (Sle16). However, the contribution of B6 loci to the lupus phenotype remained unknown. We used a congenic approach to deduce the contribution to the autoimmune traits of the B6 genomic interval on chromosome 3 (Sle18), previously shown to be linked to antinuclear Ab production. This interval, when transferred on a 129 background (a strain termed 129.B6-Sle18), promoted auto-Ab production targeting a broad spectrum of autoantigens, expansion of activated CD4(+)T and B cells and mild glomerulonephritis. Surprisingly, these immunological and serological defects were accompanied by a significant increase in the percentage of regulatory T cells (Tregs; CD4(+) Foxp3(+)). However, these cells, that expressed lower levels of Foxp3, had no impaired regulatory function when tested in vitro. These findings illustrate further the efficacy of congenic dissection for functional characterisation of individual lupus susceptibility loci and highlight the contribution of loci derived from non-autoimmune strains to the disease pathogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.