Abstract

This paper presents an ultra-low-power and high-gain low-dropout (LDO) regulator. It is based on the flipped voltage follower cell with an adaptive biasing technique that is suitable for implantable biomedical applications. The error amplifier for the proposed regulator consists of two cross-coupled common-gate cells and a pseudo-folded-cascode structure to increase the regulator’s loop gain. In addition, three different compensation techniques including Miller, cascode, and Q-reduction are simultaneously utilized at the LDO regulator to achieve high stability despite having the minimum load current and ultra-low power consumption. The proposed LDO regulator has been simulated in TSMC 90-nm CMOS technology with minimum power consumption of 2.8 µW at no load. Post-layout simulation results show that the proposed LDO regulator is stable over load currents from 30 µA to 40 mA with a maximum on-chip CL of 100 pF. Moreover, the voltage regulator settles in less than 850 ns at 0.75 V output voltage that is achieved in response to a load transient step of 40 mA with a rise time of 200 ns. Besides, the obtained line and load regulations are significantly improved to 1 mV/V and 36 µV/mA, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.