Abstract

In order to achieve stable and dexterous grasping of objects, prehension force control is quite a significant parameter for prosthetic hands. Commercially available hands such as bebionic, i-limb quantum and Michelangelo offer the precise grasping capability to perform activities of daily living (ADLs). However, the cost of such hands is too expensive for amputees residing in low-income countries. This paper introduces a low-cost, simple and efficient system for controlling the prehension force of a self-designed myoelectric prosthetic hand. A hand prototype was developed employing 3D printing technology and an intrinsic actuation approach. The hand fingers were equipped with a pre-calibrated force sensor for the online estimation of the grasp force. A closed-loop proportional-derivative (PD) based position control system was designed considering actuator as plant, electromyography (EMG) as a reference and grasp force as a feedback signal. The results showed highly improved parameters, i.e. overshoot, offset and settling time of the proposed system than a simple open-loop system. These parameters guarantee faster closing of hand fingers and the production of accurate prehension force during finger-object interaction. Further, the myoelectric hand with a developed control scheme was successfully tested on five different transradial amputees for performing precise and faster grasping of different shaped objects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.