Abstract

AbstractAs the pipeline length increases, the accuracy in a branch prediction gets critical to overall performance. In designing a branch predictor, in addition to accuracy, microarchitects should consider power consumption, especially in embedded processors. In this paper, we propose a low power branch predictor, which is based on the gshare predictor, by accessing the BTB (Branch Target Buffer) only when the prediction from the PHT (Prediction History Table) is taken. To enable this, the PHT is accessed one cycle earlier to prevent the additional delay. As a side effect, two predictions from the PHT are obtained at one access to the PHT, which leads to more power reduction. The proposed branch predictor reduces the power consumption, not requiring any additional storage arrays, not incurring additional delay (except just one MUX delay) and never harming accuracy. The simulation results show that the proposed predictor reduces the power consumption by 43-52%.KeywordsPower ConsumptionPower ReductionTotal Power ConsumptionAdditional DelayEmbed ProcessorThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.