Abstract

The unrelenting demands of wireless/multimedia DSP workloads necessitate specialized hardware to achieve higher performance and power efficiency. Razor systems offer even greater power efficiency by minimizing static supply voltage (VDD) guardbands for process/voltage/temperature (PVT) variation, while also providing a degree of resilience to general delay faults (e.g. SEUs). To date, Razor has only been demonstrated on silicon in the context of microprocessor pipelines [1][2]. Reported Algorithmic Noise Tolerance (ANT) circuits [3][4] operate at very high error rates, but rely on imbalanced ripple-carry adders and hence clock frequency (Fclk) is limited (50-88MHz). ANT also requires additional datapaths for error detection/correction, which cannot be clock gated in the absence of errors, increasing baseline area and power. Combining Razor error detection with algorithm-level correction enables high-Fclk datapaths and low-overheads. A 0.19mm2 16-tap Razor FIR datapath is fabricated in 65nm LP CMOS, with input and output SRAMs, tunable pulse-clock generator, BIST logic and an AHB slave on-chip bus interface (Fig. 24.5.1), demonstrating: 1) two distinct fixed-latency Razor error-correction techniques for real-time DSP datapaths: time-borrow tracking (TBT) and interpolation-based approximate error correction (AEC); 2) a Razor latch (RZL) circuit with reduced pessimism; 3) a 1GHz datapath, an order of magnitude improvement over [3][4] due to elimination of ripple-carry adders; 4) energy efficiency improvement of up to 37%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call