Abstract

In this paper, we present two control schemes for the unknown sampled-data nonlinear singular system. One is an observer-based digital redesign tracker with the state-feedback gain and the feed-forward gain based on off-line observer/Kalman filter identification (OKID) method. The presented control scheme is able to make the unknown sampled-data nonlinear singular system to well track the desired reference signal. The other is an active fault tolerance state-space self-tuner using the OKID method and modified autoregressive moving average with exogenous inputs (ARMAX) model-based system identification for unknown sampled-data nonlinear singular system with input faults. First, one can apply the off-line OKID method to determine the appropriate (low-) order of the unknown system order and good initial parameters of the modified ARMAX model to improve the convergent speed of recursive extended-least-squares (RELS) method. Then, based on modified ARMAX-based system identification, a corresponding adaptive digital control scheme is presented for the unknown sampled-data nonlinear singular system with immeasurable system state. Moreover, in order to overcome the interference of input fault, one can use a fault-tolerant control scheme for unknown sampled-data nonlinear singular system by modifying the conventional self-tuner control (STC). The presented method can effectively cope with partially abrupt and/or gradual system input faults. Finally, some illustrative examples including a real circuit system are given to demonstrate the effectiveness of the presented design methodologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.