Abstract

A low-jitter RF phase locked loop (PLL) frequency synthesizer with high-speed mixed-signal down-scaling circuits is proposed. Several techniques are proposed to reduce the design complexity and improve the performance of the mixed-signal down-scaling circuit in the PLL. An improved D-latch is proposed to increase the speed and the driving capability of the DMP in the down-scaling circuit. Through integrating the D-latch with ‘OR’ logic for dual-modulus operation, the delays associated with both the ‘OR’ and D-flip-flop (DFF) operations are reduced, and the complexity of the circuit is also decreased. The programmable frequency divider of the down-scaling circuit is realized in a new method based on deep submicron CMOS technology standard cells and a more accurate wire-load model. The charge pump in the PLL is also realized with a novel architecture to improve the current matching characteristic so as to reduce the jitter of the system. The proposed RF PLL frequency synthesizer is realized with a TSMC 0.18-μm CMOS process. The measured phase noise of the PLL frequency synthesizer output at 100 kHz offset from the center frequency is only −101.52 dBc/Hz. The circuit exhibits a low RMS jitter of 3.3 ps. The power consumption of the PLL frequency synthesizer is also as low as 36 mW at a 1.8 V power supply.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call