Abstract
Effective nature-based solutions (NBS) and strategies for freshwater microplastic (MP) pollution are beneficial for reducing ecological and human health risks. This study proposed an innovative NBS for the in-situ retention of aquatic MPs. By evaluating the tolerance and MP retention efficiency of different submerged macrophytes, Myriophyllum aquaticum was identified as a well-suited system for optimization as NBS for operational MP retainment practice. The response surface method and artificial neural network modeling were applied to determine the optimal operational strategy of this solution, which was determined to be at a flow rate of 60 L/h, aeration intensity of 5 m3/(m2·h), and plant density of 190 plants/m2. Under this strategy, an average MP retention of 93.38% was achieved for the actual tested lake. The retention of MPs was particularly effective for particle sizes larger than 100 μm (especially films and fragments) and for the 4 polymer types. At the same time, also total nitrogen and phosphorus levels in the treated waters were reduced by 80.0% and 78.4% respectively, reflecting the added environmental value for water purification. This NBS provides a feasible strategy for mitigating MP pollution, but further research is needed on its long-term applicability and potential ecological effects in a wider range of specific environments, and effective development of plant harvesting cycle strategies is also essential to achieve long-lasting MP pollution removal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.