Abstract

Zinc-ion hybrid supercapacitor (ZHSC), emerging as a promising energy storage device, bring together the benefits of the high power density of supercapacitors, the high energy density of batteries and the environmental and cost benefits of zinc-ion technology. However, the development of high energy density ZHSC working in a wide temperature range is still a challenge. The key to achieve this target is to develop the electrolyte with thermal stability and anti-freezing property which is compatible with the advanced cathode material. Herein, a natural biomass coconut shell derived activated carbon as cathode and cost-effective aqueous Zn(ClO4)2 as electrolyte are applied in aqueous ZHSC. The fabricated aqueous ZHSC exhibits an outstanding high energy density of 190.3 W h/kg at 89.8 W/kg. Furthermore, a robust flexible quasi-solid-state ZHSC device was constructed by using a cross-linked poly(vinyl alcohol)/montmorillonite/Zn(ClO4)2 gel electrolyte (PVA/MMT/Zn(ClO4)2), which shows superior electrochemical performance over a wide working temperature range. Experimental analysis and molecular dynamics simulations reveal that the Zn(ClO4)2 process faster ionic migration compared to other Zn-based salts and form more hydrogen bonds with H2O, leading to a superior anti-freezing property. Our flexible device maintains the high energy storage capacities and excellent cycling stability over a wide temperature range from − 50 to 80 °C, suggesting its great potential applications for energy storage applications in harsh environmental conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.