Abstract

Purpose: To design a “low-cost” tele-imaging method allowing real-time tele-ultrasound expertise, delayed tele-ultrasound diagnosis, and tele-radiology between remote peripherals hospitals and clinics (patient centers) and university hospital centers (expert center).Materials and methods: A system of communication via internet (IP camera and remote access software) enabling transfer of ultrasound videos and images between two centers allows a real-time tele-radiology expertise in the presence of a junior sonographer or radiologist at the patient center. In the absence of a sonographer or radiologist at the patient center, a 3D reconstruction program allows a delayed tele-ultrasound diagnosis with images acquired by a lay operator (e.g., midwife, nurse, technician). The system was tested both with high and low bandwidth. The system can further accommodate non-ultrasound tele-radiology (conventional radiography, mammography, and computer tomography for example). The system was tested on 50 patients between CHR Tsevie in Togo (40 km from Lomé-Togo and 4500 km from Tours-France) and CHU Campus at Lomé and CHU Trousseau in Tours.Results: A real-time tele-expertise was successfully performed with a delay of approximately 1.5 s with an internet bandwidth of around 1 Mbps (IP Camera) and 512 kbps (remote access software). A delayed tele-ultrasound diagnosis was also performed with satisfactory results. The transmission of radiological images from the patient center to the expert center was of adequate quality. Delayed tele-ultrasound and tele-radiology was possible even in the presence of a low-bandwidth internet connection.Conclusion: This tele-imaging method, requiring nothing by readily available and inexpensive technology and equipment, offers a major opportunity for telemedicine in developing countries.

Highlights

  • Tele-radiology is the practice of radiology at a distance via the use of emerging information and communication technologies (ICTs)

  • Dr Kenneth Bird first conceived of tele-radiology in the late 1960s, when he used a televisual transmission system based on radio waves between the Massachusetts General Hospital (USA) and Boston’s Logan airport (USA), at a distance of 5 km [1]

  • The quality of the ultrasound images tele-transmitted by the video server Axis 243SA was sufficient for an accurate diagnosis with a transmission delay of approximately 1.5 s

Read more

Summary

Introduction

Tele-radiology is the practice of radiology at a distance via the use of emerging information and communication technologies (ICTs) It consists of producing a radiological image [X-ray (XR), ultrasound (USS), magnetic imaging resonance (MRI), nuclear medicine (NM)] and making said image available to an off-site radiologist through the use of telecommunications systems for the purpose of obtaining radiological expertise that is unavailable on-site. The main objective of this technology is the exchange and sharing of medical images between health professionals for the purpose of obtaining a diagnosis at a distance, either in real time or following a time delay. It is perhaps one of the best practical solutions to a shortage of on-site experienced radiologists, in developing countries. Teleradiology has the potential to play a key role in medicine in bridging the gap in equal access to diagnostic imaging

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.