Abstract
Hermitian radial basis functions implicits is a method capable of reconstructing implicit surfaces from first-order Hermitian data. When globally supported radial functions are used, a dense symmetric linear system must be solved. In this work, we aim at exploring and computing a matrix-free implementation of the Conjugate Gradients Method on the GPU in order to solve such linear system. The proposed method parallelly rebuilds the matrix on demand for each iteration. As a result, it is able to compute the Hermitian-based interpolant for datasets that otherwise could not be handled due to the high memory demanded by their linear systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.