Abstract

Faecal pollution of water and the resulting potential presence of human enteric pathogens is a predominant threat to public health. Microbiological water quality can be assessed by the detection of standard faecal indicator bacteria (SFIB) such as E. coli or certain Enterococcus species. In recent years, isothermal amplification methods have become a useful alternative to polymerase chain reaction (PCR), allowing molecular diagnostics with simple or no instrumentation. In this study, a novel screening method for the molecular detection of Enterococcus spp. by loop-mediated isothermal amplification (LAMP) is described. A set of six specific LAMP primers was designed to amplify a diagnostic fragment of the Enterococcus 23S rRNA gene, which is present in several enterococcal species targeted by quantitative PCR (qPCR), which is the standard technique recommended by the US Environmental Protection Agency. Sensitivity and specificity tests were performed using a set of 30 Enterococcus and non-target bacterial reference strains. It is shown that LAMP is equally sensitive and even more specific than the qPCR assay. A dilution series of Enterococcus faecalis DNA revealed that the LAMP method can reliably detect 130 DNA target copies per reaction within 45 min. Additionally, enterococci isolated from Austrian surface waterbodies, as well as a set of DNA extracts from environmental waters, were tested. Contingency analysis demonstrated a highly significant correlation between the results of the developed LAMP assay and the reference qPCR method. Furthermore, a simple staining procedure with a fluorescence dye demonstrated the identification of amplified products by eye. In conclusion, this method is an important component for the efficient screening and testing of water samples in low-resource settings lacking sophisticated laboratory equipment and highly trained personnel, requiring only a simple heating block.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.