Abstract
BackgroundStable soil aggregates are essential for optimal crop growth and preventing soil erosion. However, tillage is often used in agriculture to loosen the soil, which disrupts the integrity of these aggregates. Soil aggregation can be enhanced by bacteria through their ability to produce exopolysaccharides and lipopolysaccharides. These compounds stabilize soil aggregates by “gluing” soil particles together. However, it has yet to be shown how tillage influences the bacterial potential to produce aggregate-stabilizing agents. Therefore, we sampled conventional and reduced tillage treatments at 0–10 cm, 10–20 cm and 20–50 cm from a long-term field trial in Frick, Switzerland. We compared the stable aggregate fraction of the soil and the bacterial potential to produce exopolysaccharides (EPS) and lipopolysaccharides (LPS) under different tillage regimes by employing a shotgun metagenomic approach. We established a method which combines hidden Markov model searches with blasts against sequences derived from the Kyoto Encyclopedia of Genes and Genomes database to analyze genes specific for the biosynthesis of these compounds.ResultsOur data revealed that the stable aggregate fraction as well as the bacterial potential to produce EPS and LPS were comparable under both tillage regimes. The highest potential to produce these compounds was found in the upper soil layer, which was disturbed by tillage, but had higher content of organic carbon compared to the layer below the tillage horizon. Additionally, key players of EPS and LPS production differed at different sampling depths. Some families with high potential to produce EPS and LPS, such as Chitinophagaceae and Bradyrhizobiaceae, were more abundant in the upper soil layers, while others, e.g. Nitrospiraceae and Planctomycetaceae, preferred the lowest sampled soil depth. Each family had the potential to form a limited number of different aggregate-stabilizing agents.ConclusionsOur results indicate that conventional tillage and reduced tillage equally promote the bacterial potential to produce EPS and LPS in the tillage horizon. However, as major bacterial groups triggering EPS and LPS formation were not the same, it is likely that gene expression pattern differ in the different treatments due to various pathways of gene induction and transcription in different bacterial species.
Highlights
Stable soil aggregates are essential for optimal crop growth and preventing soil erosion
soil organic carbon (SOC) stocks decreased with depth, and were higher in the 0–20 cm depth under reduced tillage (RT) compared to conventional tillage (CT)
Conclusions a typical stratification of soil carbon and microbial biomass was observed under RT in our study, no difference in the stable aggregate fraction of the soil or the potential to produce EPS and LPS was observed between RT and CT systems
Summary
Stable soil aggregates are essential for optimal crop growth and preventing soil erosion. We compared the stable aggregate fraction of the soil and the bacterial potential to produce exopolysaccharides (EPS) and lipopolysaccharides (LPS) under different tillage regimes by employing a shotgun metagenomic approach. Bacteria are of higher importance for soil aggregation at the microscale, as they are capable of synthesizing exopolysaccharides (EPS) and lipopolysaccharides (LPS), which act as “glue” for soil particles [15, 16]. Bacteria use these compounds for cell attachment to mineral surfaces, which fosters the formation of composite building units and microaggregates [15,16,17]. Most enzymes involved in the EPS biosynthesis are strain-specific and can catalyze multiple metabolic processes
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have