Abstract

In this paper, we introduce an uplifted reduced order modeling (UROM) approach through the integration of standard projection based methods with long short-term memory (LSTM) embedding. Our approach has three modeling layers or components. In the first layer, we utilize an intrusive projection approach to model the dynamics represented by the largest modes. The second layer consists of an LSTM model to account for residuals beyond this truncation. This closure layer refers to the process of including the residual effect of the discarded modes into the dynamics of the largest scales. However, the feasibility of generating a low rank approximation tails off for higher Kolmogorov n-width systems due to the underlying nonlinear processes. The third uplifting layer, called super-resolution, addresses this limited representation issue by expanding the span into a larger number of modes utilizing the versatility of LSTM. Therefore, our model integrates a physics-based projection model with a memory embedded LSTM closure and an LSTM based super-resolution model. In several applications, we exploit the use of Grassmann manifold to construct UROM for unseen conditions. We perform numerical experiments by using the Burgers and Navier–Stokes equations with quadratic nonlinearity. Our results show the robustness of the proposed approach in building reduced order models for parameterized systems and confirm the improved trade-off between accuracy and efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.