Abstract

It is imperative for residents to have access to safe facilities after an earthquake. This ensures the safety and well-being of individuals while minimizing the risks posed by aftershocks. This research has used multi-criteria decision-making (MCDM) and network-based analysis to select and allocate emergency shelters (ESs). Several ESs are initially chosen as potential candidates. A weighting process is then used to evaluate various criteria, including proximity to the fault, fire stations, hospitals, main roads, the area of the ESs, and the population’s vulnerability. The centers are evaluated and ranked using the CRiteria Importance Through Intercriteria Correlation (CRITIC) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) methods. The Maximized Weighted Capacitated Coverage with a Radius (MWCCR) problem is used to address location and allocation issues for varying ESs using option rankings. The findings showed that increasing the number of centers does not always lead to a higher level of service delivery, assuming a consistent service delivery radius. The distribution of the centers is more crucial. Additionally, line density analysis is used to evaluate traffic conditions in the study area, assisting in finding areas with heavy traffic flow. When the radius of access for ESs is assumed to be small, the main roads bear less additional traffic, and with the increase of the radius, the amount of traffic on the main roads gradually increases. This is valuable information for emergency services following an earthquake.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call