Abstract

The performance of a Pelton wheel is influenced by the jet created by the nozzle. Therefore, a Computational Fluid Dynamics (CFD) simulation was proposed. In this study, the significant output parameters (outlet velocity, outlet pressure, and tangential force component) and input parameters (different pressure and spear locations) were examined. In addition, the influencing parameters and their contributing percentages to the performance of the Pelton wheel were calculated using different optimisation techniques such as Taguchi Design of Experiments (DoE), Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), Grey Relational Analysis (GRA) and Criteria Importance Through Intercriteria Correlation (CRITIC). The effect of input factors on the output response was examined with DoE, and the results show that the inlet pressure had the most significant impact (97.38%, 99.18%, and 97.38%, respectively, for all different spear sites with a 99% confidence level). In terms of preference values, the TOPSIS and GRA results are comparable (best ranks for simulation runs #24 and #25 and least ranks for simulations #2 and #3, respectively). The CRITIC results for the pressure parameter are in good agreement with the Taguchi ANOVA analysis. The last spear location (5 mm after the nozzle outlet), with an inlet pressure of 413685 Pa generated the best result when employing the TOPSIS and GRA techniques. The outlet pressure of the nozzle was found to have a significant impact on the flow pattern of the Pelton Wheel based on the analysis of the CRITIC, Taguchi, and CFD results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call