Abstract
Detecting short genetically modified (GM) nucleic acid fragments in GM crops and associated products is critically important for the global agriculture industry. Although nucleic acid amplification-based technologies have been widely used for genetically modified organism (GMO) detection, they still struggle to amplify and detect these ultra-short nucleic acid fragments in highly processed products. Here, we used a multiple-CRISPR-derived RNA (crRNA) strategy to detect ultra-short nucleic acid fragments. By combining confinement effects on local concentrations, an amplification-free CRISPR-based short nucleic acid (CRISPRsna) system was established to detect the cauliflower mosaic virus 35S promoter in GM samples. Moreover, we demonstrated assay sensitivity, specificity, and reliability by directly detecting nucleic acid samples from GM crops with a wide genomic range. The CRISPRsna assay avoided possible aerosol contamination from nucleic acid amplification and saved time due to an amplification-free approach. Given that our assay displayed distinct advantages over other technologies in detecting ultra-short nucleic acid fragments, it may have wide applications for detecting GM in highly processed products.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.