Abstract

A methodology to locally characterize conical intersections (CIs) between two adiabatic electronic states for which no nonadiabatic coupling (NAC) vectors are available is presented. Based on the Hessian and gradient at the CI, the branching space coordinates are identified. The potential energy surface around the CI in the branching space is expressed in the diabatic representation, from which the NAC vectors can be calculated in a wave-function-free, energy-based approach. To demonstrate the universality of the developed methodology, the minimum-energy CI (MECI) between the first (S1) and second (S2) singlet excited states of formamide is investigated at the state-averaged complete active space self-consistent field (SA-CASSCF) and extended multistate complete active space second-order perturbation theory (XMS-CASPT2) levels of theory. In addition, the asymmetrical MECI between the ground state (S0) and S1 of cyclopropanone is evaluated using SA-CASSCF, as well as (ME)CIs between the S1 and S2 states of benzene using SA-CASSCF and time-dependent density functional theory (TDDFT). Finally, a CI between the S1 and S2 excited states of thiophene was analyzed using TDDFT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.