Abstract

Titanium alloys have been widely used in marine engineering fields. However, because of high biocompatibility, they are vulnerable to biofouling. In this work, based on the micro-arc oxidation technology and spontaneous galvanic replacement reaction, a temperature-responsive low-toxic smart coating consisting of liquid metal particles is designed to control the release of Ga3+, Cu2+, and Cu1+ ions in different temperatures. This technology can ensure the full release of active ingredients within the target temperature range, intelligently maintaining the excellent anti-biofouling performance, while saving active ingredients. After being immersed in culture media with Sulfate-Reducing Bacteria (SRB) for 14 days at 10, 20, and 30°C, at the optimal activity temperature of 30°C for SRB, the best sample releases the highest amounts of Ga3+, Cu2+, and Cu1+ ions, demonstrating a 99.9% bactericidal rate. When the temperature decreases to 10°C, the activity level of SRB is very low, and the smart coating can also reduce the released ions correspondingly, still with a 97.3% bactericidal rate. The remarkable anti-biofouling performance is attributed to the physical damage and lethal ions interaction. Furthermore, the best sample exhibits good corrosion resistance. This work presents a design route for smart anti-biofouling coatings for temperature-responsive.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.