Abstract
Lamellar bioenergetic failure is thought to contribute to laminitis pathogenesis but current knowledge of lamellar bioenergetic physiology is limited. Metabolomic analysis (MA) can systematically profile multiple metabolites. Applied to lamellar microdialysis samples (dialysate), lamellar bioenergetic changes during laminitis (the laminitis metabolome) can be characterised. The objectives of this study were to develop a technique for targeted MA of lamellar and skin dialysates in normal horses, and to compare the lamellar and plasma metabolomic profiles of normal horses with those from horses developing experimentally induced laminitis. Archived lamellar and skin dialysates (n = 7) and tissues (n = 6) from normal horses, and lamellar dialysate and plasma from horses given either 10 g/kg oligofructose (treatment group, OFT; n = 4) or sham (control group, CON; n = 4) were analysed. The concentrations of 44 intermediates of central carbon metabolism (CCM) were determined using liquid chromatography–tandem mass spectrometry. Data were analysed using multivariate (MVA) and univariate (UVA) analysis methods.The plasma metabolome appeared to be more variable than the lamellar metabolome by MVA, driven by malate, pyruvate, aconitate and glycolate. In lamellar dialysate, these metabolites decreased in OFT horses at the later time points. Plasma malate was markedly increased after 6 h in OFT horses. Plasma malate concentrations between OFT and CON at this time point were significantly different by UVA. MA of lamellar CCM was capable of differentiating horses developing experimental laminitis from controls. Lamellar malate, pyruvate, aconitate and glycolate, and plasma malate alone were identified as the source of differentiation between OFT and CON groups. These results highlighted clear discriminators between OFT and CON horses, suggesting that changes in energy metabolism occur locally in the lamellar tissue during laminitis development. The biological significance of these alterations requires further investigation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.