Abstract

Herein, we fabricated an electrochemical (EC) and UV–visible absorption (UV–vis) dual mode split-type immunoassay for the detection of 17β-estradiol (E2), which was mediated by liposome encapsulated methylene blue (MB@lip). MB molecule acted as the probe in the EC and UV–vis absorption dual mode detections, and its release was controlled by liposome. The competitive immune recognition was conducted between the E2 in the sample and E2 conjugated bovine serum protein (E2-BSA) adsorbed on the 96-wells plate in combining with E2 antibody labeled with MB@lip (E2-Ab/MB@lip). MB molecule could be released from the resulting immune composite of E2-BSA/E2-Ab/MB@lip in the presence of Triton X-100, and quantified by UV–vis and EC methods. The three-dimensional cross-linked reduced graphene oxide/Ti3C2 (3D-rGO/Ti3C2) aerogel was prepared through hydrothermal method, then complexed with the electroactive anthraquinone (AQ) and used as the electrode modified material. The AQ/3D-rGO/Ti3C2 composite had high surface area and provided abundant adsorption sites for MB, and the displacement/competitive behavior between AQ and MB could dexterously achieve the ratiometric EC detection of E2. In addition, the inherent blue color of MB allowed it to be analyzed by UV–vis absorption method. The proposed dual mode detection method exhibited broad linear ranges of 0.1 pg mL−1 to 50 ng mL−1 (by UV–vis) and 0.03 pg mL−1 to 50 ng mL−1 (by EC) for E2 detection, and the detection limits were 0.023 pg mL−1 (S/N = 3) and 8.0 fg mL−1 (S/N = 3), respectively. Moreover, the proposed immunoassay exhibited good practicability and was applied to monitor E2 in milk and serum successfully.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.