Abstract

A set D ⊆ V is a restrained dominating set of a graph G = (V, E) if every vertex in V\D is adjacent to a vertex in D and a vertex in V\D. Given a graph G and a positive integer k, the restrained domination problem is to check whether G has a restrained dominating set of size at most k. The restrained domination problem is known to be NP-complete even for chordal graphs. In this paper, we propose a linear time algorithm to compute a minimum restrained dominating set of a proper interval graph. We present a polynomial time reduction that proves the NP-completeness of the restrained domination problem for undirected path graphs, chordal bipartite graphs, circle graphs, and planar graphs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call