Abstract

The concept of network is predominantly used in several applications of computer communication networks. It is also a fact that the dominating set acts as a virtual backbone in a communication network. These networks are vulnerable to breakdown due to various causes, including traffic congestion. In such an environment, it is necessary to regulate the traffic so that these vulnerabilities could be reasonably controlled. Motivated by this, [Formula: see text]-part degree restricted domination is defined as follows. For a positive integer [Formula: see text], a dominating set [Formula: see text] of a graph [Formula: see text] is said to be a [Formula: see text]-part degree restricted dominating set ([Formula: see text]-DRD set) if for all [Formula: see text], there exists a set [Formula: see text] such that [Formula: see text] and [Formula: see text]. The minimum cardinality of a [Formula: see text]-DRD set of a graph [Formula: see text] is called the [Formula: see text]-part degree restricted domination number of [Formula: see text] and is denoted by [Formula: see text]. In this paper, we present a polynomial time reduction that proves the NP -completeness of the [Formula: see text]-part degree restricted domination problem for bipartite graphs, chordal graphs, undirected path graphs, chordal bipartite graphs, circle graphs, planar graphs and split graphs. We propose a polynomial time algorithm to compute a minimum [Formula: see text]-DRD set of a tree and minimal [Formula: see text]-DRD set of a graph.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call