Abstract
A new quadrilateral shell element with 5/6 nodal degrees of freedom is presented. Assuming linear isotropic elasticity a Hellinger–Reissner functional with independent displacements, rotations and stress resultants is used. Within the mixed formulation the stress resultants are interpolated using five parameters for the membrane forces as well as for the bending moments and four parameters for the shear forces. The hybrid element stiffness matrix resulting from the stationary condition is integrated analytically. This leads to a part obtained by one point integration and a stabilization matrix. The element possesses the correct rank, is free of locking and is applicable within the whole range of thin and thick shells. The in-plane and bending patch tests are fulfilled and the computed numerical examples show that the convergence behaviour of the stress resultants is very good in comparison to comparable existing elements. The essential advantage is the fast stiffness computation due to the analytically integrated matrices.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have