Abstract

AbstractIn this article, the problem of the optimal reset control design for Lipschitz nonlinear systems is addressed. The reset controller includes a base linear controller and a reset law that enforces resets to the controller states. The reset law design is strongly dependent on the appropriate design of the base controller. For this reason, in this article, the base controller and reset law are simultaneously designed. More precisely, an optimal dynamic output feedback is considered as the base controller which minimizes the upper bound of a quadratic performance index, and a reset law is used to improve the transient response of the closed‐loop system. This design is done in a full offline procedure. The problem is transformed into a set of linear matrix inequalities (LMIs), and the reset controller is obtained by solving an offline LMI optimization problem. Finally, two examples are presented to illustrate the effectiveness and validity of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call