Abstract
AbstractA stochastically forced linear inverse model (LIM) of the combined modes of variability from the tropical and South Pacific Oceans is used to investigate the linear growth of optimal initial perturbations and to identify the spatiotemporal features of the stochastic forcing associated with the atmospheric Pacific–South American patterns 1 and 2 (PSA1 and PSA2). Optimal initial perturbations are shown to project onto El Niño–Southern Oscillation (ENSO) and South Pacific decadal oscillation (SPDO), where the inclusion of subsurface South Pacific Ocean temperature variability significantly increases the multiyear linear predictability of the deterministic system. We show that the optimal extratropical sea surface temperature (SST) precursor is associated with the South Pacific meridional mode, which takes from 7 to 9 months to linearly evolve into the final ENSO and SPDO peaks in both the observations and as simulated in an atmosphere-forced ocean model. The optimal subsurface precursor resembles its peak phase, but with a weak amplitude, representing oceanic Rossby waves in the extratropical South Pacific. The stochastic forcing is estimated as the residual by removing the deterministic dynamics from the actual tendency under a centered difference approximation. The resulting stochastic forcing time series satisfies the Gaussian white noise assumption of the LIM. We show that the PSA-like variability is strongly associated with stochastic SST forcing in the tropical and South Pacific Oceans and contributes not only to excite the optimal initial perturbations associated with ENSO and the SPDO but in general to activate the entire stochastic SST forcing, especially in austral summer.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have