Abstract
A linear discrete dynamic system model is constructed to represent the temporal interactions among significantly expressed genes in response to bioethanol conversion inhibitor 5-hydroxymethylfurfural for ethanologenic yeast Saccharomyces cerevisiae. This study identifies the most significant linear difference equations for each gene in a network. A log-time domain interpolation addresses the non-uniform sampling issue typically observed in a time course experimental design. This system model also insures its power stability under the normal condition in the absence of the inhibitor. The statistically significant system model, estimated from time course gene expression measurements during the earlier exposure to 5-hydroxymethylfurfural, reveals known transcriptional regulations as well as potential significant genes involved in detoxification for bioethanol conversion by yeast.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.