Abstract
Background: Metastatic Castration-Resistant Prostate Cancer (mCRPC) represents a critical challenge in current prostate cancer treatment. Benzimidazole Derivative XY123 has emerged as a novel inhibitor for its treatment. Objective: This study aims to establish a robust Quantitative Structure-Activity Relationship (QSAR) model for predicting the activity of Benzimidazole Derivative XY123 derivatives, aiding the development of novel anti-prostate cancer drugs. Methods: Utilizing CODESSA software, descriptors were computed based on various moieties of Benzimidazole Derivative XY123 derivatives. Multiple linear regression models were constructed, and both linear and nonlinear QSAR models were developed using heuristics and gene expression programming. Results: The linear model with two descriptors demonstrated the best predictive capacity for inhibitor activity, while the nonlinear model generated through Gene Expression Programming (GEP) exhibited correlation coefficients of 0.83 and 0.82 for the training and test sets, respectively. The average errors were 0.03 and 0.05, indicating the stability and the improved predictive ability of the nonlinear model. Conclusion: The QSAR linear model has an advantage over the nonlinear model in optimizing Benzimidazole Derivative XY123, providing a direction for the development of effective drugs for mCRPC treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.