Abstract

This article investigates the position synchronization control problem for networked interconnected motion systems (NIMSs). First, a position synchronization error model is established for the interconnected motion system, and the delay-induced uncertainty; the adjacent coupling between subsystems and the external disturbances is lumped together as a total disturbance in the system model. Next, the linear extended state observer (LESO) is designed to estimate the total disturbance and the system state simultaneously. Then, a LESO-based synchronization controller is designed to achieve both position synchronization and disturbance rejection. The effect of the network-induced delay in the synchronization performance is significantly reduced. Finally, experiments on a position synchronization control platform of an interconnected four-motor system are presented to demonstrate the effectiveness and superiority of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call