Abstract
Graph neural networks (GNNs) are crucial tools for processing non-Euclidean data. However, due to scalability issues caused by the dependency and topology of graph data, deploying GNNs in practical applications is challenging. Some methods aim to address this issue by transferring GNN knowledge to MLPs through knowledge distillation. However, distilled MLPs cannot directly capture graph structure information and rely only on node features, resulting in poor performance and sensitivity to noise. To solve this problem, we propose a lightweight optimization method for GNNs that combines graph contrastive learning and variable-temperature knowledge distillation. First, we use graph contrastive learning to capture graph structural representations, enriching the input information for the MLP. Then, we transfer GNN knowledge to the MLP using variable temperature knowledge distillation. Additionally, we enhance both node content and structural features before inputting them into the MLP, thus improving its performance and stability. Extensive experiments on seven datasets show that the proposed KDGCL model outperforms baseline models in both transductive and inductive settings; in particular, the KDGCL model achieves an average improvement of 1.63% in transductive settings and 0.8% in inductive settings when compared to baseline models. Furthermore, KDGCL maintains parameter efficiency and inference speed, making it competitive in terms of performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.