Abstract

Chemodynamic therapy (CDT) based on Fenton-like reaction is often limited by the tumor microenvironment (TME), which has insufficient hydrogen peroxide, and single CDT treatment is often less efficacious. To overcome these limitations, a hydrogel-based system is designed to enhance the redox stress (EOH) by loading the composite nanomaterial Cu-Hemin-Au, into the agarose hydrogels. The hydrogels can reach the tumor site upon intratumoral injection, and then coagulate and stay for extended period. Once irradiated with near-infrared light, the Cu-Hemin-Au act as a photothermal agent to convert the light energy into heat, and the EOH gradually heated up and softened, releasing the Cu-Hemin-Au residing in it to achieve photothermal therapy (PTT). Benefiting from the glucose oxidase (GOx)-like activity of the Au nanoparticles, glucose in the tumor cells is largely consumed, and hydrogen peroxide (H2 O2 ) is generated in situ, and then Cu-Hemin-Au react with sufficient H2 O2 to generate a large amount of reactive oxygen species, which promote the complete inhibition of tumor growth in mice during the treatment cycle. The hydrogel system for the synergistic enhancement of oxidative stress achieves good PTT/CDT synergy, providing a novel inspiration for the next generation of hydrogels for application in antitumor therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call