Abstract

Chemodynamic therapy (CDT) is a powerful cancer treatment strategy by producing excessive amount of reactive oxygen species (ROS) to kill cancer cells. However, the inadequate hydrogen peroxide (H2O2) supply and antioxidant defense systems in tumor tissue significantly impair the therapeutic effect of CDT, hindering its further applications. Herein, we present an intelligent nanoplatform with H2O2 homeostasis disruption and oxidative stress amplification properties for enhanced CDT. This nanoplatform is obtained by encapsulating glucose oxidase (GOx) in a pH- and glutathione (GSH)-responsive degradable copper doped-zeolitic imidazolate framework (Cu-ZIF8), followed by loading of 3-amino-1,2,4-triazole (3AT) and modification of hyaluronic acid (HA) for tumor targeting delivery. The GOx@Cu-ZIF8-3AT@HA not only reduces energy supply and increases H2O2 level by exhausting intratumoral glucose, but also disturbs tumor antioxidant defense systems by inhibiting the activity of catalase (CAT) and depleting intracellular GSH, resulting in disrupted H2O2 homeostasis in tumor. Moreover, the elevated H2O2 will transform into highly toxic hydroxyl radical (·OH) by Cu+ that generated from redox reaction between Cu2+ and GSH, amplifying the oxidative stress to enhance the CDT efficacy. Consequently, GOx@Cu-ZIF8-3AT@HA has significantly inhibited the 4T1 xenograft tumor growth without discernible side effects, which provides a promising strategy for cancer management. STATEMENT OF SIGNIFICANCE: The inadequate H2O2 level and antioxidant defense system in tumor tissues significantly impair the therapeutic effect of CDT. Herein, we developed an intelligent nanoplatform with H2O2 homeostasis disruption and oxidative stress amplification properties for enhanced CDT. In this nanoplatform, GOx could exhaust intratumoral glucose to reduce energy supply accompanied with production of H2O2, while the suppression of CAT activity by 3AT and depletion of GSH by Cu2+ would weaken the antioxidant defense system of tumors. Ultimately, the raised H2O2 level would convert to highly toxic •OH by Fenton-like reaction, amplifying the CDT efficacy. This work provides a promising strategy for cancer management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.