Abstract

Three-dimensional (3D) single-particle tracking (SPT) is a key tool for studying dynamic processes in the life sciences. However, conventional optical elements utilizing light fields impose an inherent trade-off between lateral and axial resolution, preventing SPT with high spatiotemporal resolution across an extended volume. We overcome the typical loss in spatial resolution that accompanies light-field-based approaches to obtain 3D information by placing a standard microscope coverslip patterned with a multifunctional, light-field metasurface on a specimen. This approach enables an otherwise unmodified microscope to gather 3D information at an enhanced spatial resolution. We demonstrate simultaneous tracking of multiple fluorescent particles within a large 0.5 × 0.5 × 0.3 mm3 volume using a standard epi-fluorescent microscope with submicron lateral and micron-level axial resolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call