Abstract

We demonstrate a new method for measuring the length of a femtosecond laser pulse induced filament in air using a LIDAR (LIght Detection And Ranging) technique. The LIDAR involves a detector with a fast response time. The back-scattered multiphoton induced fluorescence from nitrogen molecules excited inside the filament is measured, from which the length of the filament can be determined. We find good agreement between the measured filament length and the length estimated from burn patterns on paper. In addition, good qualitative agreement between the experimental measurement and numerical simulations is obtained for the signal features of the filament. We propose that this new method can be used to quantitatively determine filamentation at longer distances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.