Abstract

BackgroundThe major hurdle in the treatment of Human Immunodeficiency virus type 1 (HIV-1) includes the development of drug resistance-associated mutations in the target regions of the virus. Since reverse transcriptase (RT) is essential for HIV-1 replication, several nucleoside analogues have been developed to target RT of the virus. Clinical studies have shown that mutations at RT codon 65 and 74 which are located in β3-β4 linkage group of finger sub-domain of RT are selected during treatment with several RT inhibitors, including didanosine, deoxycytidine, abacavir and tenofovir. Interestingly, the co-selection of K65R and L74V is rare in clinical settings. We have previously shown that K65R and L74V are incompatible and a R→K reversion occurs at codon 65 during replication of the virus. Analysis of the HIV resistance database has revealed that similar to K65R+L74V, the double mutant K65R+L74I is also rare. We sought to compare the impact of L→V versus L→I change at codon 74 in the background of K65R mutation, on the replication of doubly mutant viruses.MethodsProviral clones containing K65R, L74V, L74I, K65R+L74V and K65R+L74I RT mutations were created in pNL4-3 backbone and viruses were produced in 293T cells. Replication efficiencies of all the viruses were compared in peripheral blood mononuclear (PBM) cells in the absence of selection pressure. Replication capacity (RC) of mutant viruses in relation to wild type was calculated on the basis of antigen p24 production and RT activity, and paired analysis by student t-test was performed among RCs of doubly mutant viruses. Reversion at RT codons 65 and 74 was monitored during replication in PBM cells. In vitro processivity of mutant RTs was measured to analyze the impact of amino acid changes at RT codon 74.ResultsReplication kinetics plot showed that all of the mutant viruses were attenuated as compared to wild type (WT) virus. Although attenuated in comparison to WT virus and single point mutants K65R, L74V and L74I; the double mutant K65R+L74I replicated efficiently in comparison to K65R+L74V mutant. The increased replication capacity of K65R+L74I viruses in comparison to K65R+L74V viruses was significant at multiplicity of infection 0.01 (p = 0.0004). Direct sequencing and sequencing after population cloning showed a more pronounced reversion at codon 65 in viruses containing K65R+L74V mutations in comparison to viruses with K65R+L74I mutations. In vitro processivity assays showed increased processivity of RT containing K65R+L74I in comparison to K65R+L74V RT.ConclusionsThe improved replication kinetics of K65R+L74I virus in comparison to K65R+L74V viruses was due to an increase in the processivity of RT containing K65R+L74I mutations. These observations support the rationale behind structural functional analysis to understand the interactions among unique RT mutations that may emerge during the treatment with specific drug regimens.

Highlights

  • The major hurdle in the treatment of Human Immunodeficiency virus type 1 (HIV-1) includes the development of drug resistance-associated mutations in the target regions of the virus

  • We subsequently demonstrated that mutations K65R and L74V are mutually exclusive and a R®K reversion occurs at reverse transcriptase (RT) codon 65 during replication of virus in peripheral blood mononuclear (PBM) cells in the absence of drugs [5]

  • A Leu®Ile change at RT codon 74 leads to a replication competent virus in the background of K65R (K65R+L74I) in PBM cells We have previously demonstrated that L®V substitution at RT codon 74 in the background of K65R results in a highly attenuated virus [5]

Read more

Summary

Introduction

The major hurdle in the treatment of Human Immunodeficiency virus type 1 (HIV-1) includes the development of drug resistance-associated mutations in the target regions of the virus. Since reverse transcriptase (RT) is essential for HIV-1 replication, several nucleoside analogues have been developed to target RT of the virus. Multidrug resistance (MDR) mutations evolve due to incomplete suppression of viral replication during treatment of HIV-infected patients. As novel nucleoside reverse transcriptase inhibitors (NRTI) continue to evolve and be employed as a component of highly active antiretroviral therapy (HAART), rare combinations and/or new combinations of RT mutations will appear more frequently. Reverse transcriptase (RT) mutations K65R and L74V/ I are selected by several antiretroviral drugs and play important roles in drug susceptibility and/or maintenance of viral load during treatment of HIV-1-infected individuals. Prevalence of these mutations in relation to M184V is strikingly low. Since the prevalence of these mutations have been looked in conjunction with other multidrugselected mutations, it is not possible to predict the interaction among various mutations and subsequent genotypes

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call