Abstract
Despite the recognized role of wild waterfowl in the potential dispersal and transmission of highly pathogenic avian influenza (HPAI) virus, little is known about how infection affects these birds. This lack of information limits our ability to estimate viral spread in the event of an HPAI outbreak, thereby limiting our abilities to estimate and communicate risk. Here, we present telemetry data from a wild Lesser Scaup (Aythya affinis), captured during a separate ecology study in the Chesapeake Bay, Maryland. This bird tested positive for infection with clade 2.3.4.4 HPAI virus of the A/goose/Guangdong/1/1996 (Gs/GD) H5N1 lineage (results received post-release) during the 2021-2022 ongoing outbreaks in North America. While the infected bird was somewhat lighter than other adult males surgically implanted with transmitters (790g, x̅=868g, n=11), it showed no clinical signs of infection at capture, during surgery, nor upon release. The bird died 3days later-pathology undetermined as the specimen was not able to be recovered. Analysis of movement data within the 3-day window showed that the infected individual's maximum and average hourly movements (3894.3 and 428.8m, respectively) were noticeably lower than noninfected conspecifics tagged and released the same day (x̅=21,594.5 and 1097.9m, respectively; n=4). We identified four instances where the infected bird had close contact (fixes located within 25m and 15min) with another marked bird during this time. Collectively, these data suggest that the HPAI-positive bird observed in this study may have been shedding virus for some period prior to death, with opportunities for direct bird-to-bird or environmental transmission. Although limited by low sample size and proximity to the time of tagging, we hope that these data will provide useful information as managers continue to respond to this ongoing outbreak event.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.