Abstract

Higher-order density approximation and estimation methods using orthogonal series expansion have been extensively discussed in statistical literature and its various fields of application. This study proposes least squares-type estimation for series expansion via minimizing the weighted square difference of series distribution expansion and a benchmarking distribution estimator. As the least squares-type estimator has an explicit expression, similar to the classical moment-matching technique, its asymptotic properties are easily obtained under certain regularity conditions. In addition, we resolve the non-negativity issue of the series expansion using quadratic programming. Numerical examples with various simulated and real datasets demonstrate the superiority of the proposed estimator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.